Emergent Web Server Architecture —
Experiments Replication

May 23, 2016

1 Introduction

Welcome and thank you for using our emergent software framework prototype. This
prototype was described in the paper “Losing Control: The Case for Emergent Software
Systems using Autonomous Assembly, Perception and Learning” submitted to SASO
2016. This manual contains instructions to execute the framework with the available
web server. This document also describes the steps to replicate the results described in
the paper.

Please, download and install Dana programming language'. Feel free to drop us a line
in the forum if you have any questions, comments or suggestions. Also, consult Dana’s
Programming Guide?, for instructions to properly install Dana’s toolchain. This project
can be executed in all supported Operating Systems (currently it supports Windows,
Ubuntu, Mac OS X and Raspberry Pi).

2 Project Structure

The folder structure of this project follows that of all Dana projects. The resources folder
contains all of the interfaces for the components. The implementation of the interfaces
are provided in the folders outside of resources. For example, the interface that defines
Composer’s functionality is in resources/composition, in MetaComposer interface. The
components are located in the folders with the same name as the interface’s folders
outside resources, in this example composition/MetaCompos — er.dn.

The framework and web server code are located in different folders. The web server
main components are located in http, cache and compression inside of web_server folder.
The main framework components (composer, monitor and learner) are presented in
composition, monitoring and learning inside of metasystems folder.

"http://www.projectdana.com
Zhttp:/ /www.projectdana.com/dana/guide/doku.php

3 Execution

The first step to execute the code is to compile. In order to compile the entire project
it is necessary to execute the command “dnc .” in meta_system folder, and execute
“dnc . -sp ../meta_system/” in web_server folder. Please, make sure Dana’s toolchain
is properly installed and working.

To properly execute the prototype some additional programs have to be installed. The
information generated in the components are stored in a database, so make sure MySQL?
database is installed. Also, to have access to the Perl scripts to generate HTML files
for the variation pattern* and enable Dana components access to the database, please,
install Perl’s® toolchain.

3.1 Web Server

In order to execute only one configuration of the web server, without monitoring and
learning, compile all components in web_server folder (as described above) and exe-
cute dana -sp ../meta_system/ WebServer in a command prompt in the web_server
folder. To verify if it is running, go to a web browser and connect to ‘http://localhost:2012/".
The index.html file (located in htdocs) should be loaded and presented as result.

By doing this the primary web server configuration will be executed. To change this
configuration to any other web server configuration available go to http and change the
.manifest file. This file contains, in a JSON syntax format, the component, in case an
interface has multiple implementations, that Dana VM will load. To choose any other
configuration, change the name of the component to any other component name present
in the http folder. For example, if the HTTPHandlerCGZ is selected as primary and you
want to change it to the component that only implements cache but not compression,
change it to HTTPHandlerC, and so on.

All available web server’s content is located in htdocs in web_server folder. Any file
dropped in htdocs will be found and sent to the client upon request by any executing
configuration of the web server.

3.2 Monitoring System

The Monitoring System role is to assemble a configuration of the web server, collect
information generated by its monitored components and save them into the database.
In order to use it, compile the entire project (as described above). Then, open two com-
mand prompt window. In one of the windows execute the Perl script to enable Dana com-
ponents access to the database (see Sec. 5 for information on how to setup and execute the
database). Make sure to change the .manifest file in meta_system/learning folder to use

3http://www.mysql.com/downloads/

4The variation pattern is an artificially created request pattern. We generated 30000 HTML files and
for each request the client requests a different file from the 30000 files (more information on that,
please refer to the paper).

Shttps://www.perl.org/get.html

Explorer instead of MetaLearner, by editing the .manifest file and changing the compo-
nent field. In the other prompt window execute dana Main ../web_server/WebServer
to start monitoring the system and collecting information. Every 10 seconds, the moni-
tor will collect metrics and events from the executing components and change the web
server configuration.

After start system execution in that setting, make sure you run any client request
pattern located in ws_clients directory from the client machine. Otherwise, the com-
ponents will not produce any metrics. You can run the client by compiling (‘dnc .’)
and executing (‘dana Client /’) the Client component from ws_clients directory. The
ws_clients/Client.dn is a Dana component that simulates the small text request pat-
tern. This pattern consists of a continuous series of request for the small_text.html
file, located at htdocs. Other types of request patterns will be described in Sec. 4.

3.3 Learning System

The Learning System uses the monitoring system to collect information from the exe-
cuting components. It then establishes correlation between the recognised pattern and
the best performing architecture (a fully description of this component is provided in
the paper — including the real-time learning technique and related details).

In order to execute the Learning System, compile the entire project (as previously
described). Again, open two prompt windows. In the first one execute the Perl script to
enable access to the database (refer to Sec. 5 for further information on how to setup and
execute the database). Make sure to edit the .manifest file located in the learning folder
and change the component field from Explorer to MetaLearner (in case you executed the
monitoring system in previous section and changed the .manifester file configuration).
In the second window execute dana Main ../web_server\WebServer in the command
prompt inside meta_system folder.

Also, similarly to the monitoring system, it is important to execute a client request
pattern from a client machine to watch the learning system in action; for example by
executing: ‘dana Client /’ from ws_clients folder.

4 Tests Replication

The evaluation was conducted using two machines. The configuration of these machines
are described below.

“ The server was a rackmount server system with an Intel Xeon E3-1280 v2
Quad Core 3.60 GHz CPU, 16 GB of RAM, running Ubuntu 14.04. The
client was a desktop machine with an i7-4770 3.40 GHz CPU, 6 GB of RAM,
running Ubuntu 14.04. The server and client reside on two different subnets
of our campus network, in different buildings.”

The paper presents two results, the first one referenced as ‘Divergent Optimality’, and
the second, ‘Online Learning’. The steps to replicate the findings described in the paper
is presented in the subsequent sub-sections.

4.1 Divergent Optimality

The Architecture Optimality Divergence presented three graphs demonstrating different
architectures performing differently when subjected to varied request patterns — in the
paper, this is illustrated by the graphs in Fig. 4, Fig. 5 and Fig. 6 in the paper.

The graphs were generated by executing the dana Main ../web_server/WebServer
component and collecting the information directly from the database.

The request patterns evaluated were small TEXT files, small IMAGE files and multiple
small HTML files in case of variation pattern. All requests are made from the client
machine running a client component located in ws.lient folder in the project.

For each client component used to generate request patterns, make sure it issues
requests to the right server machine IP address. You can change the IP address in the
Client component by opening its source code (.dn) in any text editor and changing the
IP address in the first line of the code, for each client component.

To run the tests follow the steps below.

1. Change .manifest file in learning, replace the value in ‘component’ field to Collec-
tor;

2. Execute the Main component dana Main ../web_server/WebServer.

3. Execute the client in a prompt with the command dana Client \small_ text.html,
from the ws_clients folder on the client machine.

The Collector.dn component will run each available architecture one hundred times
with 10 seconds exposure. At the end of the execution, the database will hold all
monitoring information in the monitoring table. The graphs were produced based on the
result returned from the execution of the SQL query: “SELECT * FROM monitoring;”.

The instructions above describes the steps to run the small text file request pat-
tern. To run the small image file pattern change dana Client \small_text.html to
dana Client \small_image.jpg. There is also the NASA trace, which can be repro-
duced by executing dana NasaClientRequest.

4.1.1 Variation Pattern

In order to generate the requests for the variation pattern, you will need to generate 30000
variations of the small text in htocs folder. To generate the files simply execute the Perl
script script_to_create_variations.pl using the command perl script_to_create_
variations.pl.

To issue the client requests, instead of using Client component, uses VariationClient
component with the command dana VariationClient. At the end of the execution,
run the query “SELECT * FROM monitoring;” for the results.

Note that if you want to delete all of the 30000 files, run the script script_to_delete_
variation.pl with the command perl script_to_delete_variation.pl located in
htdocs.

4.2 Online learning

The online learning result shows the benefits of using our framework to find the best
configuration every time it recognises a new pattern. The results described in the paper
were obtained by following the steps (result such as in Fig. 7 in the paper):

1. Change .manifest file in learning, replace the value in ‘component’ field to Met-
aLearner;

2. Execute the Main component dana Main ../web_server/WebServer.

3. Execute the client in a prompt with the command dana NasaClientRequest, from
ws_clients on the client machine.

Note that it is possible to limit the components that will be available for experimen-
tations. In order to do so, copy .tgnore.example file and rename it to .ignore, this file
contains a list of components that will be ignored by the composer (so, please, only use
the .ignore file when trying to limit the number of architectures that will be exposed to
the requests, otherwise, there is no need to create the .ignore file).

5 Database Configuration

To configure the database you have to create a database named webserver in a MySQL
database on the server machine. After that, create the database schema by executing the
file named webserver_schema.sql, located at database_external/database_schema
folder. Remember to set the user name and password to access the database in the
database.config file located in database_external directory. To enable Dana com-
ponents access to the database, open a new command prompt and execute the Perl script
database_broker.pl, also in database_external folder.

To execute the script run the command perl database_broker.pl. It is imperative
that database_broker.pl script remains running while all tests are running.

6 Final Considerations

Thank you for your interest in our research. We hope you find this manual helpful to get
you started with our current version of the emergent software framework. All questions,
comments and feedback is greatly appreciated. Contact us on Project Dana’s forum
(http://www.projectdana.com/fora) or over email (r.rodriguesfilho@lancaster.ac.uk).

