Distributed Emergent Software Systems —
Experiments Replication

September 2", 2016

1 Introduction

Welcome and thank you for using our distributed emergent software system framework
prototype. This prototype was described in the paper “Fxperiments with a Machine-
centric Approach to Realise Distributed Emergent Software Systems” submitted to ARM
workshop 2016. This manual contains instructions to execute the framework with
the available web server and load balancer. This document also describes the steps to
replicate the results described in the paper.

Please, download and install Dana platform'. Feel free to drop us a line in the forum
if you have any questions, comments or suggestions. Also, consult Dana’s Programming
Guide? for instructions to properly install Dana’s toolchain. Dana can be executed in
all supported Operating Systems (currently it supports Windows, Ubuntu, Mac OS X
and Raspberry Pi). The framework, however, is suggested to be executed on Ubuntu.

2 Project Structure

The framework, the web server code and load balancer code are located in different
folders. The web server main components are located in request, http, cache and
compression inside of web_server folder. The main framework components (composer,
monitor and learner) are presented in composition, monitoring and learning inside
of meta_systems folder. Finally, the load balancer main components are located in
scheduler, special_scheduler and request inside of load_balancer folder.

The folder structure of each project follows that of all Dana projects. The resources
folder contains all of the interfaces for the components. The implementation of the in-
terfaces are provided in the folders outside of resources. For example, the interface that
defines Composer’s functionality is in resources/composition, in MetaComposer inter-
face. The components are located in the folders with the same name as the interface’s
folders outside resources, in this example composition/M etaComposer.dn.

"http:/ /www.projectdana.com
2http:/ /www.projectdana.com/dana/guide/doku.php



3 Executing Target Applications

The first step to execute the code is to compile. In order to compile the entire project
execute makeall in the project’s root folder. Please, make sure Dana’s toolchain is
properly installed and working.

To properly execute the prototype, some additional programs have to be installed. The
information generated in the components are stored in a database, so make sure MySQL?
database is installed. Also, to have access to the Perl scripts to generate HTML files
for the variation pattern* and enable Dana components access to the database, please,
install Perl’s® toolchain.

3.1 Web Server

In order to execute only one configuration of the web server, without perception and
learning, compile all components in web_server folder (using the command: $ dnc . -sp
../meta_system/ in web_server folder) and execute $ dana -sp ../meta_system/
WebServer in a command prompt in the web_server folder. To verify if it is running, go
to a web browser and connect to ‘http://localhost:2012/°. The index.html file (located
in htdocs) should be loaded and presented as result.

By executing an instance of the web server in this manner, the primary web server
configuration will be executed. To change this configuration to any other web server
configuration available go to hittp and change the .manifest file. This file contains, in a
JSON syntax format, the component, in case an interface has multiple implementations,
that Dana VM will load. To choose any other configuration, change the name of the
component to any other component name present in the http folder. For example, if
the HTTPHandlerCGZ is selected as primary and you want to change it to the component
that only implements cache but not compression, change it to HTTPHandlerC, and so on.

All available web server’s html pages are located in htdocs in web_server folder. Any
file dropped in htdocs will be found and sent to the client upon request by any executing
configuration of the web server.

3.2 Load Balancer

Similarly to the web server, the load balancer is located in loadyalancer folder. To only
compile the load balancer enter load balancer’s folder and execute the following com-
mand: $§ dnc . -sp "../meta_system/;../web_server/". In order to run the load
balancer executes: $ dana -sp "../meta_system/;../web_server/ LoadBalancer.
Please, make sure to execute at least two instances of the web server , and to configure
server_listS configuration file with port and ip address of the running web servers.

3http://www.mysql.com/downloads/

4The variation pattern is an artificially created request pattern. We generated 30000 HTML files and
for each request the client requests a different file from the 30000 files (more information on that,
please refer to the paper).

https://www.perl.org/get.html

5The configuration file is located in load_balancer/scheduler



Analogous to the web server, the load balancer will start running with the default
configuration. In order to change the configuration, locate the .manifest files and replace
the component’s name to any available component. The .manifest file can be located in
the following folders: load_balancer/scheduler, load_balancer /specialscheduler and in
load_balancer /request.

4 Replicating Evaluation Experiments

The evaluation was conducted using three machines. The configuration of these machines
are described below.

Two rackmount servers with an Intel Xeon E3-1280 v2 Quad Core 3.60 GHz
CPU, 16 GB of RAM, running Ubuntu 14.04. The load balancer was a
desktop machine with an i7-4770 3.40 GHz CPU, 6 GB of RAM, running
Ubuntu 14.04. The server and client reside on two different subnets of our
campus network, in different buildings.

The paper presents two results, the first one referenced as ‘Divergent Optimality’, and
the second, ‘Learning Behaviour’. The steps to replicate the findings described in the
paper is presented in the subsequent sub-sections.

Note that it is possible to limit the components that will be available for experimen-
tations. In order to do so, copy .ignore.example file and rename it to .ignore, this file
contains a list of components that will be ignored by the Assembly module (so, please,
only use the .ignore file when trying to limit the number of architectures that will be
exposed to the requests, otherwise, there is no need to create the .ignore file).

It is required, however, to limit the number of possible configurations to only 64 to
replicate the paper’s results. This is due to the amount of time it will take to run the
experiments in case all possible configurations for the web servers are available. In this
case, where all web servers configurations are available, there will be 7056 unique possible
configurations for the entire distributed system (considering 42 for each web server and
4 for the load balancer). The Learning module has a 5 seconds window to expose
and collect information for each configuration, thus taking ~9 hours for the centralised
learning strategy to locate the optimal configuration for each workload. Considering
two unique workloads (Workload 1 and Workload 2, described in Sec. 4.1), the time the
system will spend in the learning exploration phase is ~18 hours (not considering the
exploitation phase of the ‘Learning Behaviour’, and the ‘Divergent Optimality’ tests).

4.1 Workloads

To evaluate the system, two workloads were used. The first workload, as described in the
paper, consists of one single html file located in web_server/htdocs named index.html.
This is a text-only html file with 3.9KB size. The second workload consists of a total
of 30000 copies of the index.html file with different names, the files will have the same
characteristic (content, size and resource-type) with different name, which forces the



system to treat them as complete different files with the same characteristics. The
30000 variations of index.html are not distributed with this project due to size, instead
all 30000 have to be created before running evaluation.

In order to generate the requests for the Workload 2 simply execute the Perl script
script_to_create_variations.pl located inside web_server/htdocs/ using the com-
mand $ perl script_to_create_ variations.pl. Note that if you want to delete all
of the 30000 files, run the script script_to_delete_ variation.pl with the command
$ perl script_to_delete_variation.pl also located in web_server/htdocs/.

4.2 Divergent Optimality

The Divergent Optimality section presented two bar graphs showing the average per-
formance of all available architectures, when subjected to two different workloads. In
order to replicate the results, executes two instances of the web server in two different
machines with equivalent configurations, and one instance of the load balancer using the
component Distributed Adaptor.dn located in meta_system folder executing the follow-
ing command:

For the Web Server:
$ dana DistributedAdaptor ../web_server/WebServer

For the Load Balancer:
$ dana DistributedAdaptor -sp ../web_server/ ../load_balancer/LoadBalancer

After running the following commands, for two web servers and the load balancer,
it is required to run the ClientRemote.dn component and the DistributedM ain.dn
component, this last component is responsible to coordinate the tests (it will coordi-
nate the system’s configuration and the client pattern). It is important to run the
DistributedMain.dn on the same machine as the Load Balancer. Execute both by
using the following commands:

For the Client:
$ dana ClientRemote

For the Coordinator:
$ dana DistributedMain

The client command has to be executed from the ws_clients folder, whereas the Co-
ordinator must be executed from meta_system folder. Furthermore, it is necessary to
run the database module that enables any Dana component access the database. Please
run the database broker, only for the Coordinator (not necessary to run it for the web
servers). For more information on how to set up the database and run the broker, see
Sec. 5. After running all above processes, type “starttest” in the Distributed M ain.dn
executed process, this will trigger tests.

As a final note, it is necessary to make sure that i) all of the components have the right
IP addresses to the components they need to exchange information/coordinate and ii)
the manifest files for the learning modules are configured. To configure the IP address
(i) first make sure that the DistributedM ain.dn have the Client’s machine IP address as
well as the Web Servers’ and the Load Balancer’s addresses. In the DistributedM ain.dn
component in meta_system folder, search for comments containing the texts: ‘change



IP for Client here’, ‘change IP for Web Servers and Load Balancer here’. Similarly,
in ClientRemote.dn in ws_clients folder, search for comments: ‘change Load Balancer
IP here’. Also, make sure the web server’s IP addresses are set in serwver_list.config
in load_balancer folder and search for comments: ‘change IP for Coordinator here’ to
configure DistributedAdaptor.dn. To configure the Learning module (ii) is required to
edit .manifest file in meta_system/learning for all instances of the system running the
web servers and load balancer and change (if necessary) the component to “SingleArch”,
the resulting string should look like the following:

{interface: "Metalearner", component: "SingleArch"}

After the Coordinate runs, the results will be in the meta_system folder within the text
files: patternl.dat for Workload 1 and pattern2.dat for Workload 2; the architectures
for both workloads will be in archlistl.dat and archlist2.dat respectively.

4.3 Learning Behaviour

The ‘Learning Behaviour’ presents the results of running the learning approach in two
different modes: i) the decentralised (selfsih) mode and ii) the centralised mode. For
both modes, however, the .manifest file inside of learning folder in meta_system has
to be reconfigured. To configure the learning for both learning behaviours, edit the
.manifest file and change the component from “SingleArch” to “Metalearner” in all
instances of the system running the web servers and the load balancer. The .manifest
file should look like the following:

{interface: "MetaLearner", component: "MetalLearner"}

4.3.1 Centralised Learning Approach

In order to execute the Centralised Learning approach, run the web servers using the
DistributedAdaptor.dn with the following command:

$ dana DistributedAdaptor ../web_server/WebServer

Then, execute the database broker (see 5)and the DistributedLearner.dn in the same
machine. Note that the database broker has to be executed before the the DistributedLearner.dn,
in order to execute the learner use the following command:

$ dana DistributedLearner -sp ../web_server/ ../load_balancer/LoadBalancer

After executing the learner module (DistributedLearner.dn), executes the clients.
You can execute either the Workload 1, or the Workload 2 in any order. However, to
replicate the results in the paper, execute the Workload 1, then wait for the system to
converge to the optimal configuration, then stop Workload 1 and execute Workload 2.
To execute the workloads, use the following commands:



For Workload 1:
$ dana Client /

For Workload 2:
$ dana Client2

To collect the results generated by the learning process, use the SQL scripts monitoring.sql
located in meta_system folder, using the following command:

$ mysql -u root -p webserver < monitoring.sql > coordinated_learning.dat

To collect the architecture’s description use the script architectures.sql also located
in meta_system using the command:

$ mysql -u root -p webserver < architectures.sql > clearning_archs.dat

4.3.2 Decentralised Learning Approach

The Decentralised Learning is to execute one instance of local learning for all target
applications, i.e. for the two web servers, and the load balancer. In order to do that,
first, execute a database broker (see Sec. 5) for all the instances of the web servers and
load balancer (have each of them running in a different machine). To execute a local
learning component use the following command:

For the Web Servers:
$ dana Main ../web_server/WebServer

For the Load Balancer:
$ dana Main -sp ../web_server/ ../load_balancer/LoadBalancer

After executing the above commands for the Web Servers and the Load Balancer, run
one instance of the client, again, this can be the Workload 1 or Workload 2. Use the
same commands described in the Centralised Learning approach to run the clients each
client. Also, in order to collect the results, use the same SQL scripts described in the
previous section. Finally, it is important to point out that for every time each of the
tests are run, please make sure to clean the database, dropping the entire ‘webserver’
database. Otherwise, the data that remains after executing a test will interfere with the
learning process and alter the observed results.

5 Database Configuration

To configure the database you have to create a database named webserver in a MySQL
database on the server machine, using the command mysql> CREATE DATABASE webserver;
After that, create the database schema by executing the file named webserver_schema.sql,
located at database_external/database_schema folder using the following command:
$ mysql -u root -p webserver < database_external/database_schema.sql. Note
that the previous command to set the database scheme, can be used to delete all of the
database data (this can be used every time before starting the tests described in this
manual). Also, remember to set the user name and password to access the database



in the database.config file located in database_external directory. To enable Dana
components access to the database, open a new command prompt and execute the Perl
script database_broker.pl, also in database_external folder. To execute the script
run the command $ perl database_broker.pl in meta_system/ database_external
folder. It is imperative that database_broker.pl script remains running while all tests
are running.

6 Final Considerations

Thank you for your interest in our research. We hope you find this manual helpful to get
you started with our current version of the distributed emergent software framework. All
questions, comments and feedback is greatly appreciated. Contact us on Project Dana’s
forum (http://www.projectdana.com/fora) or over email (r.rodriguesfilho@lancaster.ac.uk).



